Discovering Latent Themes in Social Media Messaging: A Machine-in-the-Loop Approach Integrating LLMs

Tunazzina Islam, Dan Goldwasser. 19th International AAAI Conference on Web and Social Media (ICWSM 2025).

[arXiv]

Abstract

Grasping the themes of social media content is key to understanding the narratives that influence public opinion and behavior. The thematic analysis goes beyond traditional topic-level analysis, which often captures only the broadest patterns, providing deeper insights into specific and actionable themes such as “public sentiment towards vaccination”, “political discourse surrounding climate policies,” etc. In this paper, we introduce a novel approach to uncovering latent themes in social media messaging. Recognizing the limitations of the traditional topic-level analysis, which tends to capture only overarching patterns, this study emphasizes the need for a finer-grained, theme-focused exploration. Traditional theme discovery methods typically involve manual processes and a human-in-the-loop approach. While valuable, these methods face challenges in scalability, consistency, and resource intensity in terms of time and cost. To address these challenges, we propose a machine-in-the-loop approach that leverages the advanced capabilities of Large Language Models (LLMs). This approach facilitates a deeper investigation into the social media discourse, revealing a variety of themes with distinct characteristics and relevance. It provides a detailed understanding of underlying nuances and efficiently maps texts to these themes, enhancing our insight into social media messaging.

To demonstrate our approach, we apply our framework to contentious topics, such as climate debate and vaccine debate. We use two publicly available datasets: (1) the climate campaigns dataset of 21k Facebook ads and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads. Our quantitative and qualitative analysis shows that our methodology yields more accurate and interpretable results compared to the baselines. Our results not only demonstrate the effectiveness of our approach in uncovering latent themes but also illuminate how these themes are tailored for demographic targeting in social media contexts. Additionally, our work sheds light on the dynamic nature of social media, revealing the shifts in the thematic focus of messaging in response to real-world events.