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How do people talk about Life-Style & Well-Being?

@keto_collab

Description: We are Ketogenic Information Collaborator. We collect information from Various Keto channels and Tweet it 
out for you.

Tweet1: Keto Frosted Flakes Cereal Recipe - Low Carb "Corn Flakes Alternative" https://myketokitchen.com/keto-
recipes/

Tweet2: The latest The Ketogenic diet Daily! https://paper.li/KetoDietDaily

@susan

Description : Boy mom, wife, Engineer, Zumba Instructor, Keto Enthusiast.

Tweet1: #fitleaders my Keto Pancakes recipe:  4 eggs, 4 oz cream cheese, 
1/2 cup almond flour, fresh blueberries Pancakes. #ketolife

Tweet2 : Almost year 4 on Keto and finally found a cereal substitute 
#ketodiet #granola #HealthyEating

https://myketokitchen.com/keto-recipes/
https://paper.li/KetoDietDaily
https://twitter.com/hashtag/ketodiet?src=hashtag_click
https://twitter.com/hashtag/granola?src=hashtag_click
https://twitter.com/hashtag/HealthyEating?src=hashtag_click
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§ Formulate a novel problem of exploiting weak supervision for characterizing users in social media.

§ Suggest a graph embedding based Expectation–maximization (EM)-style approach.

§ Conduct extensive experiments on real-world datasets to demonstrate the effectiveness of the model.

Our Goal 
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Roadmap

Brief Introduction to Graph Embedding Model

Dataset Collection and Annotation

Automatic User Characterization

User Type Analysis
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Information Graph Creation

§ Nodes: 
• users representing by tweets
• profile description
• user type

§ Edges: 
• profile description-to-user type
• user-to-user type
• profile description-to-user
• user-user
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Information Graph Embedding

§ Embed nodes in a common embedding space.

§ Maximize similarity between two instances in the 
embedding space  if –

1. profile description has a type,
2. a user has a type.

§ Train embedding following a negative sampling 
approach.
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Inference Function

§ Edge connections based on the learned node 
representations.

§ Connecting the nodes with the top k scores.
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EM-style Learning Approach

§ Step 1: Learn information graph embedding.

§ Step 2: Apply inference function to infer unlabeled 
users.

§ Step 3: Stopping criterion. 
• At each iteration, after Step 2, check the model 

convergence.
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Dataset

§ 13k yoga users and 14k keto users from May-November 2019 from Twitter.

§ Holdout Data Annotation :
• Manually annotated 786 yoga users and 908 keto users using binary label ‘practitioner’, ‘promotional’.
• 1 annotator, with annotation instruction and examples provided.
• To calculate % agreement, 2 graduate students  annotate a subset of tweets having inter-annotator agreement 

65% (substantial agreement).

§ Constructing Weak Labels
• Keyword based knowledge extraction from profile description.

§ Quality of Weak Labeling:
• 451 yoga users and 56 keto users have both weak and ground truth label
• Yoga: accuracy 79%, macro-avg F1 score 78%
• Keto: accuracy 86%, macro-avg F1 score 67%



12

Roadmap

Brief Introduction to Graph Embedding Model

Dataset Collection and Annotation

Automatic User Characterization

User Type Analysis



13

Models

§ Our Model: EM-Style Approach

§ Baseline Models:
• Weakly Supervised Baseline: 

o Label Propagation

• Supervised Baseline:
o LSTM_Glove
o Fine-tuned BERT
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EM-Style approach outperforms all baselines

§ Our Model: EM-Style Approach
• Yoga:

Ø Accuracy: 78%
Ø Macro-avg F1 score: 76%

• Keto:
Ø Accuracy: 72%
Ø Macro-avg F1 score: 64%

§ Baseline Models:
• Weakly Supervised Baseline: 

o Label Propagation

• Supervised Baseline:
o LSTM_Glove
o Fine-tuned BERT



15

Does Multiview Information Help?
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Does Multiview Information Help?

Multiview information improves prediction performance compared to the models using only either profile 
description or user network information.
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Tweets and Labels

(a) yoga: practitioner (b) yoga: promotional

(d) keto: promotional(c) keto: practitioner 18



Profile Description and Labels

(a) yoga: practitioner (b) yoga: promotional

(d) keto: promotional(c) keto: practitioner 19



Users’ Sentiment Analysis

(a) yoga: practitioner

(b) keto: practitioner
20



Summary of Contributions

§ Formulate a novel problem of exploiting weak supervision for characterizing users in social media.

§ Suggest a graph embedding based EM-style approach for learning and reasoning to construct like-minded 
users incrementally.

§ Generate weak labels from user’s profile description along with quantitative quality assessment.

§ Conduct extensive experiments on real-world datasets to demonstrate the effectiveness of the model.
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https://tunazislam.github.io/
@Tunaz_Islam

Slide: https://tunazislam.github.io/files/ICWSM22_yoga_keto.pdf

Tunazzina Islam
Department of Computer Science,

Purdue University, West Lafayette, IN.
Email: islam32@purdue.edu

Questions?

https://tunazislam.github.io/
https://tunazislam.github.io/files/ICWSM22_yoga_keto.pdf

