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How do people talk about Life-Style & Well-Being?

g @susan

Description : Boy mom, wife, Engineer, Zumba Instructor, Keto Enthusiast.

Tweetl: #fitleaders my Keto Pancakes recipe: 4 eggs, 4 oz cream cheese,
1/2 cup almond flour, fresh blueberries Pancakes. #ketolife

Tweet2 : Almost year 4 on Keto and finally found a cereal substitute
#ketodiet #granola #HealthyEating

[ :&‘ "‘«
i@ @Xketo_collab
S
Description: We are Ketogenic Information Collaborator. We collect information from Various Keto channels and Tweet it
out for you.

Tweetl: Keto Frosted Flakes Cereal Recipe - Low Carb "Corn Flakes Alternative" https://myketokitchen.com/keto-
recipes/

Tweet2: The latest The Ketogenic diet Daily! https://paper.li/KetoDietDaily



https://myketokitchen.com/keto-recipes/
https://paper.li/KetoDietDaily
https://twitter.com/hashtag/ketodiet?src=hashtag_click
https://twitter.com/hashtag/granola?src=hashtag_click
https://twitter.com/hashtag/HealthyEating?src=hashtag_click

Our Goal

* Formulate a novel problem of exploiting weak supervision for characterizing users in social media.
= Suggest a graph embedding based Expectation—-maximization (EM)-style approach.

» Conduct extensive experiments on real-world datasets to demonstrate the effectiveness of the model.
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Information Graph Creation

= Nodes:

users representing by tweets
profile description
user type

= Edges:

profile description-to-user type
user-to-user type

profile description-to-user
user-user

practitioner

Uy
‘ Twitter users representing
‘by their tweets.

Profile O Label (User type)

description

/ Follow relation / Observed edge Inferred edge



Information Graph Embedding

* Embed nodes in a common embedding space. b %

" Maximize similarity between two instances in the
embedding space if —
1. profile description has a type,
2. auser has a type.

* Train embedding following a negative sampling

U
approach. ‘ Twitter users representing Profile O Label (User type)
‘by their tweets. description

/ Follow relation / Observed edge Inferred edge



Inference Function

= Edge connections based on the learned node b %
representations.

* Connecting the nodes with the top k scores.

U
U
‘ Twitter users representing Profile O Label (User type)
‘by their tweets. description

/ Follow relation / Observed edge - Inferred edge



EM-style Learning Approach

= Step 1: Learn information graph embedding. b %

= Step 2: Apply inference function to infer unlabeled
users.

= Step 3: Stopping criterion.
* At each iteration, after Step 2, check the model

convergence. 4 u,
1
‘ Twitter users representing Profile O Label (User type)
‘by their tweets. description

/ Follow relation / Observed edge Inferred edge
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Dataset

13k yoga users and 14k keto users from May-November 2019 from Twitter.

Holdout Data Annotation :
* Manually annotated 786 yoga users and 908 keto users using binary label ‘practitioner’, ‘promotional’.
* 1 annotator, with annotation instruction and examples provided.
* To calculate % agreement, 2 graduate students annotate a subset of tweets having inter-annotator agreement

65% (substantial agreement).

Constructing Weak Labels
* Keyword based knowledge extraction from profile description.

Quality of Weak Labeling:
* 451 yoga users and 56 keto users have both weak and ground truth label
* Yoga: accuracy 79%, macro-avg F1 score 78%
* Keto: accuracy 86%, macro-avg F1 score 67%
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= QOur Model: EM-Style Approach

Models

Baseline Models:

Weakly Supervised Baseline:

o Label Propagation

Supervised Baseline:
o LSTM_Glove

o Fine-tuned BERT

. Keto
odel

Accuracy Macro-avg F1 Accuracy Macro-avg F1
LSTM _Glove 0.51 0.45 0.72 0.43
Fine-tuned BERT 0.47 0.47 0.72 0.42
Label propagation 0.78 0.75 0.66 0.42
EM-style approach 0.78 0.76 0.72 0.64
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EM-Style approach outperforms all baselines

" QOur Model: EM-Style Approach

* Yoga: Model Yoga Reto
» Accuracy: 78% Accuracy Macro-avg F1 Accuracy Macro-avg F1
» Macro-avg F1 score: 76% LSTM Glove 0.51 0.45 0.72 0.43
* Keto: Fine-tuned BERT 0.47 0.47 0.72 0.42
> Accuracy: 72% Label propagation 0.78 0,75 0.66 0.42
» Macro-avg F1 score: 64% [ EMe-style approach 0.78 0.76 0.72 0.64

=  Baseline Models:

*  Weakly Supervised Baseline:
o Label Propagation

* Supervised Baseline:

o LSTM_Glove
o Fine-tuned BERT
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Does Multiview Information Help?

Model Yoga Keto
Accuracy Macro-avg F1 Accuracy Macro-avg F1

Label propagation (des) 0.721 0.711 0.715 0.398
EM-style approach (des) 0.781 0.761 0.664 0.635
Label propagation (net) 0575 0572 0.644 0.384
EM-style approach (net) 0.670 0.657 0.707 0.617
Label propagation (des + net) 0.781 0.753 0.663 0.418
EM-style approach (des + net) 0.782 0.763 0.722 0.642

des : profile description
net : user network
des + net : both profile description and user network
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Does Multiview Information Help?

Model Yoga Keto

Accuracy Macro-avg F1 Accuracy Macro-avg F1
Label propagation (des) 0.721 0.711 0.715 0.398
EM-style approach (des) 0.781 0.761 0.664 0.635
Label propagation (net) 0575 0572 0.644 0.384
EM-style approach (net) 0.670 0.657 0.707 0.617
Label propagation (des + net) 0.781 0753 0.663 0.418

EM-style approach (des + net) 0.782 0.763 0.722 0.642

des : profile description
net : user network
des + net : both profile description and user network

Multiview information improves prediction performance compared to the models using only either profile
description or user network information.
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Tweets and Labels
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Profile Description and Labels
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Users’ Sentiment Analysis

Topic O Topic .1
hatha Preathe haggfﬁﬁiyllé%ntle
vinyasa

barre strength week today
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stretch class studio
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Summary of Contributions

Formulate a novel problem of exploiting weak supervision for characterizing users in social media.

= Suggest a graph embedding based EM-style approach for learning and reasoning to construct like-minded
users incrementally.

* Generate weak labels from user’s profile description along with quantitative quality assessment.

» Conduct extensive experiments on real-world datasets to demonstrate the effectiveness of the model.



THANK YOU ©

Slide: https://tunazislam.github.io/files/ICWSM?22 yoga_keto.pdf

Questions?

Tunazzina Islam

Department of Computer Science,
Purdue University, West Lafayette, IN.
Email: islam32 @purdue.edu

3 https://tunazislam.github.io/

@Tunaz_Islam
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https://tunazislam.github.io/
https://tunazislam.github.io/files/ICWSM22_yoga_keto.pdf

