

Twitter User Representation Using Weakly Supervised Graph Embedding

Tunazzina Islam, Dan Goldwasser

Department of Computer Science Purdue University, West Lafayette, IN

> ICWSM 2022 Date: June 6-9, 2022

How do people talk about Life-Style & Well-Being?

@susan

Description : Boy mom, wife, Engineer, Zumba Instructor, Keto Enthusiast.

Tweet1: #fitleaders my Keto Pancakes recipe: 4 eggs, 4 oz cream cheese, 1/2 cup almond flour, fresh blueberries Pancakes. #ketolife

Tweet2 : Almost year 4 on Keto and finally found a cereal substitute <u>#ketodiet</u> <u>#granola</u> <u>#HealthyEating</u>

@keto_collab

Description: We are Ketogenic Information Collaborator. We collect information from Various Keto channels and Tweet it out for you.

Tweet1: Keto Frosted Flakes Cereal Recipe - Low Carb "Corn Flakes Alternative" <u>https://myketokitchen.com/keto-recipes/</u>

Tweet2: The latest The Ketogenic diet Daily! https://paper.li/KetoDietDaily

Our Goal

- Formulate a novel problem of exploiting weak supervision for characterizing users in social media.
- Suggest a graph embedding based Expectation–maximization (EM)-style approach.
- Conduct extensive experiments on real-world datasets to demonstrate the effectiveness of the model.

Roadmap

~ <u>,</u>	Brief Introduction to Graph Embedding Model
	Dataset Collection and Annotation
	Automatic User Characterization
	User Type Analysis

Information Graph Creation

- Nodes:
 - users representing by tweets
 - profile description
 - user type
- Edges:
 - profile description-to-user type
 - user-to-user type
 - profile description-to-user
 - user-user

Information Graph Embedding

- Embed nodes in a common embedding space.
- Maximize similarity between two instances in the embedding space if –
 - 1. profile description has a type,
 - 2. a user has a type.
- Train embedding following a negative sampling approach.

Inference Function

- Edge connections based on the learned node representations.
- Connecting the nodes with the top k scores.

EM-style Learning Approach

- Step 1: Learn information graph embedding.
- Step 2: Apply inference function to infer unlabeled users.
- Step 3: Stopping criterion.
 - At each iteration, after Step 2, check the model convergence.

Roadmap

• • •	Brief Introduction to Graph Embedding Model
	Dataset Collection and Annotation
	Automatic User Characterization
	User Type Analysis

Dataset

- 13k yoga users and 14k keto users from May-November 2019 from Twitter.
- Holdout Data Annotation :
 - Manually annotated **786 yoga users** and **908 keto users** using binary label 'practitioner', 'promotional'.
 - 1 annotator, with annotation instruction and examples provided.
 - To calculate % agreement, 2 graduate students annotate a subset of tweets having inter-annotator agreement 65% (substantial agreement).
- Constructing Weak Labels
 - Keyword based knowledge extraction from profile description.
- Quality of Weak Labeling:
 - 451 yoga users and 56 keto users have both weak and ground truth label
 - Yoga: accuracy 79%, macro-avg F1 score 78%
 - Keto: accuracy 86%, macro-avg F1 score 67%

Roadmap

• • •	Brief Introduction to Graph Embedding Model
	Dataset Collection and Annotation
	Automatic User Characterization
	User Type Analysis

Models

• Our Model: EM-Style Approach

Baseline Models:

- Weakly Supervised Baseline:
 Label Propagation
- Supervised Baseline:
 - LSTM_Glove
 - \circ Fine-tuned BERT

Model		Yoga	Keto		
	Accuracy	Macro-avg F1	Accuracy	Macro-avg F1	
LSTM_Glove	0.51	0.45	0.72	0.43	
Fine-tuned BERT	0.47	0.47	0.72	0.42	
Label propagation	0.78	0.75	0.66	0.42	
EM-style approach	0.78	0.76	0.72	0.64	

EM-Style approach outperforms all baselines

- Our Model: EM-Style Approach
 - Yoga:
 - ➢ Accuracy: 78%
 - ➤ Macro-avg F1 score: 76%

• Keto:

- ➤ Accuracy: 72%
- ➢ Macro-avg F1 score: 64%

Baseline Models:

- Weakly Supervised Baseline:
 - \circ Label Propagation
- Supervised Baseline:
 - LSTM_Glove
 - Fine-tuned BERT

Model		Yoga	Keto		
	Accuracy	Macro-avg F1	Accuracy	Macro-avg F1	
LSTM_Glove	0.51	0.45	0.72	0.43	
Fine-tuned BERT	0.47	0.47	0.72	0.42	
Label propagation	0.78	0.75	0.66	0.42	
EM-style approach	0.78	0.76	0.72	0.64	

Does Multiview Information Help?

Model	Yoga		Keto	
	Accuracy	Macro-avg F1	Accuracy	Macro-avg F1
Label propagation (des)	0.721	0.711	0.715	0.398
EM-style approach (des)	0.781	0.761	0.664	0.635
Label propagation (net)	0.573	0.572	0.644	0.384
EM-style approach (net)	0.670	0.657	0.707	0.617
Label propagation (des $+$ net)	0.781	0.753	0.663	0.418
EM-style approach (des + net)	0.782	0.763	0.722	0.642
des : profile description				
net : user network				

des + net : both profile description and user network

Does Multiview Information Help?

Model	Yoga		Keto	
	Accuracy	Macro-avg F1	Accuracy	Macro-avg F1
Label propagation (des)	0.721	0.711	0.715	0.398
EM-style approach (des)	0.781	0.761	0.664	0.635
Label propagation (net)	0.573	0.572	0.644	0.384
EM-style approach (net)	0.670	0.657	0.707	0.617
Label propagation (des + net)	0.781	0.753	0.663	0.418
EM-style approach (des + net)	0.782	0.763	0.722	0.642
des : profile description				
net : user network				
des + net : both profile description and user network				

Multiview information improves prediction performance compared to the models using only either profile description or user network information.

Roadmap

• • •	Brief Introduction to Graph Embedding Model
	Dataset Collection and Annotation
	Automatic User Characterization
MELINES ENERGY AND	User Type Analysis

Tweets and Labels

Topic 0	Topic 1	Topic 0	Topic 1	
today great teacher	lifestyle fitness ^{delhi} ^{fashion} health	day ^{love} new class ^{meditation}	fitnessmodel justbepresent fitness vogaforstress	
class love day new pose time	dally healthy meditation food spiritual	teacher join practice today yogakid	sport yogapant sport everybodybend gym yogaforlife	
(a) yoga: pra	ctitioner	(b) yoga: promotional		
Topic O ketoonabudget dinner <mark>ketonormie</mark>	Topic 1 low diet	Topic O krebscycle benagene science age supplement	chocolate paleo meal	

(c) keto: practitioner

(d) keto: promotional

18

Profile Description and Labels

(a) yoga: practitioner

(c) keto: practitioner

Users' Sentiment Analysis

(b) keto: practitioner

Summary of Contributions

- Formulate a novel problem of exploiting weak supervision for characterizing users in social media.
- Suggest a graph embedding based EM-style approach for learning and reasoning to construct like-minded users incrementally.
- Generate weak labels from user's profile description along with quantitative quality assessment.
- Conduct extensive experiments on real-world datasets to demonstrate the effectiveness of the model.

THANK YOU ③

Slide: https://tunazislam.github.io/files/ICWSM22_yoga_keto.pdf

Questions?

Tunazzina Islam

Department of Computer Science, Purdue University, West Lafayette, IN. Email: islam32@purdue.edu

https://tunazislam.github.io/

