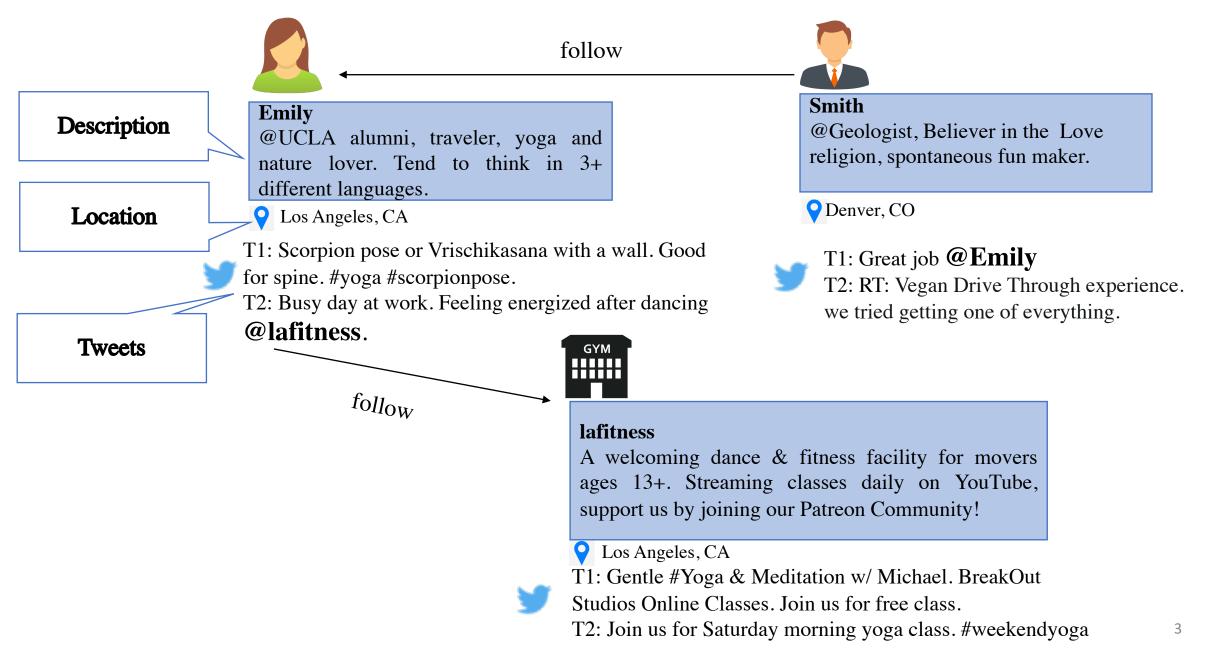
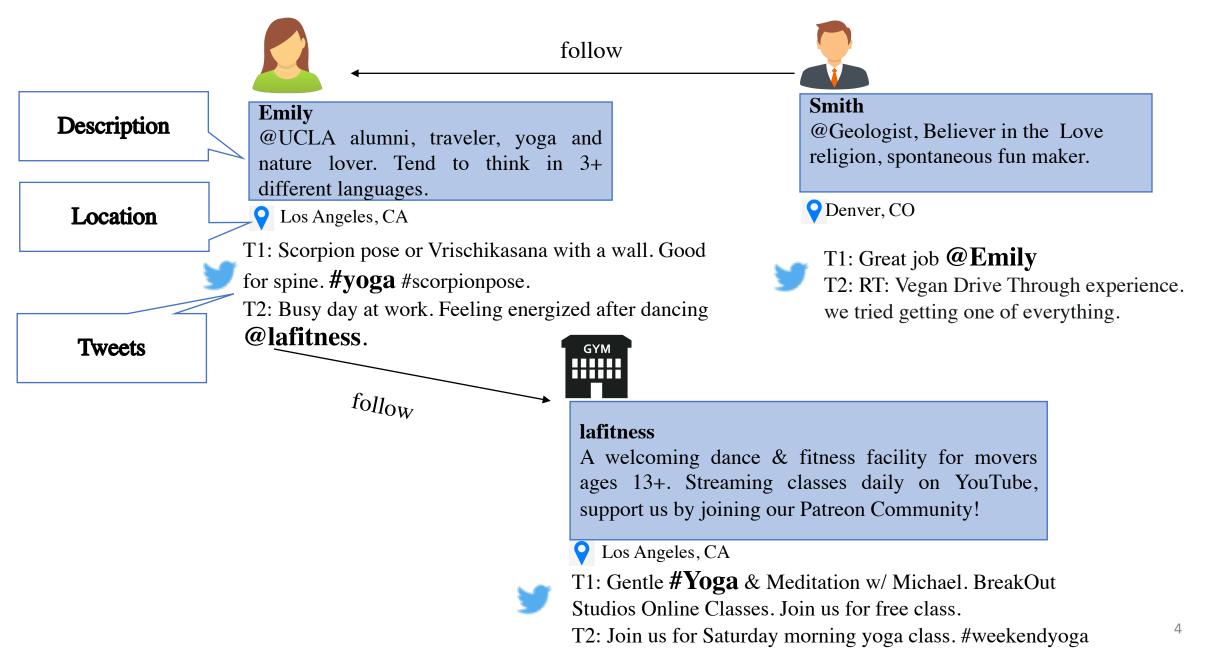
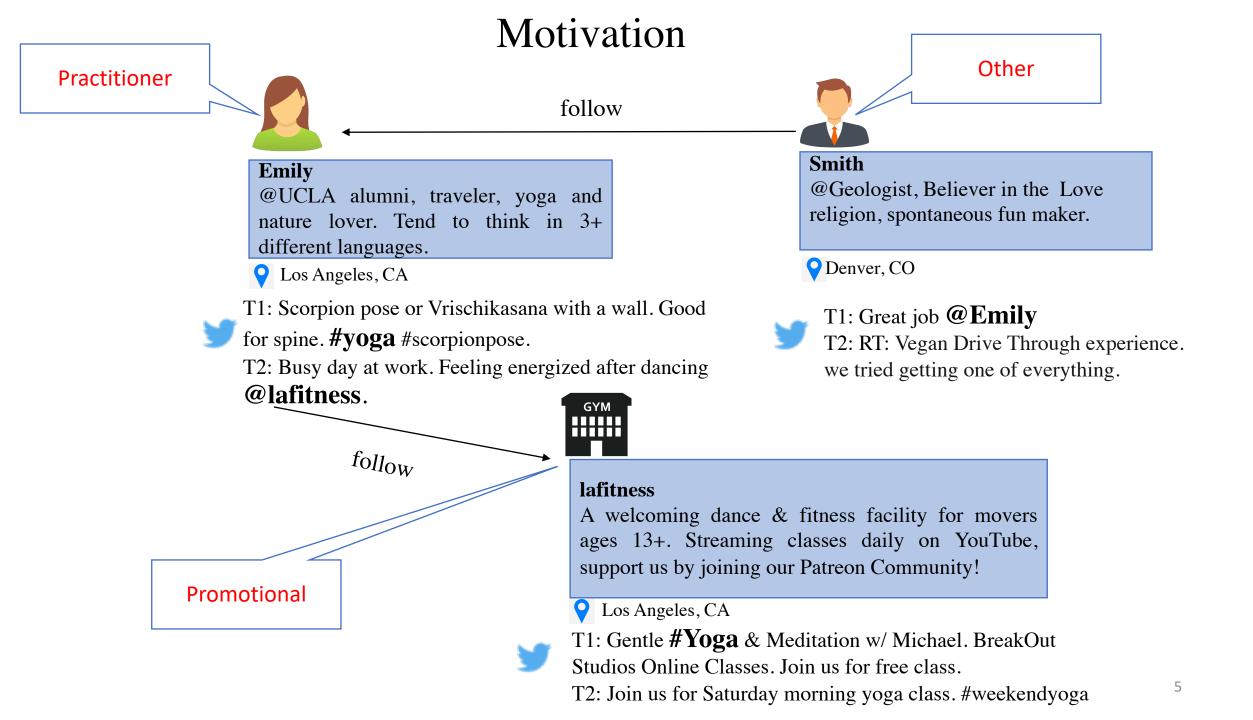
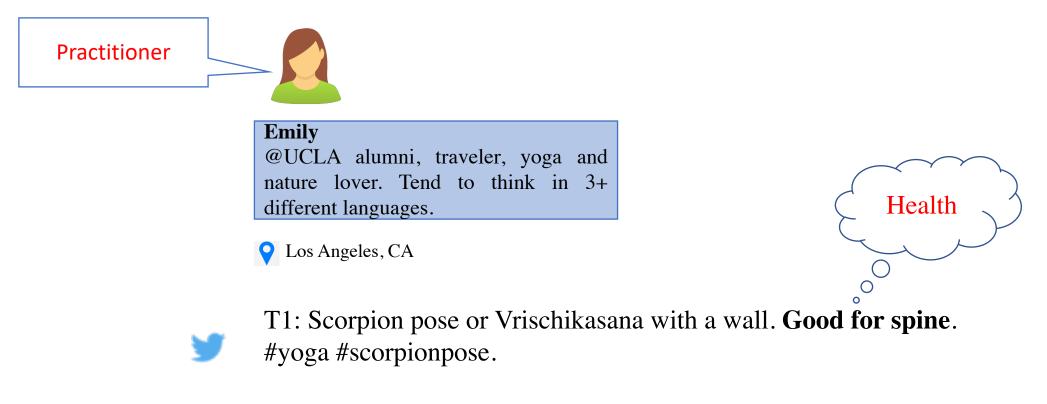
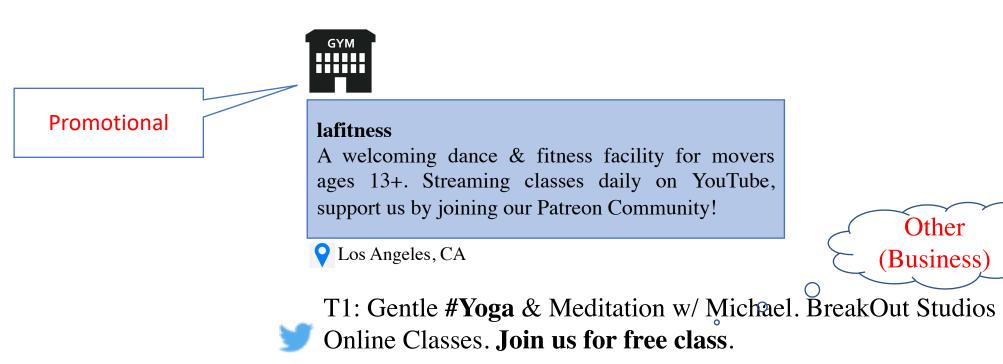

Do You Do Yoga? Understanding Twitter Users' Types and Motivations using Social and Textual Information

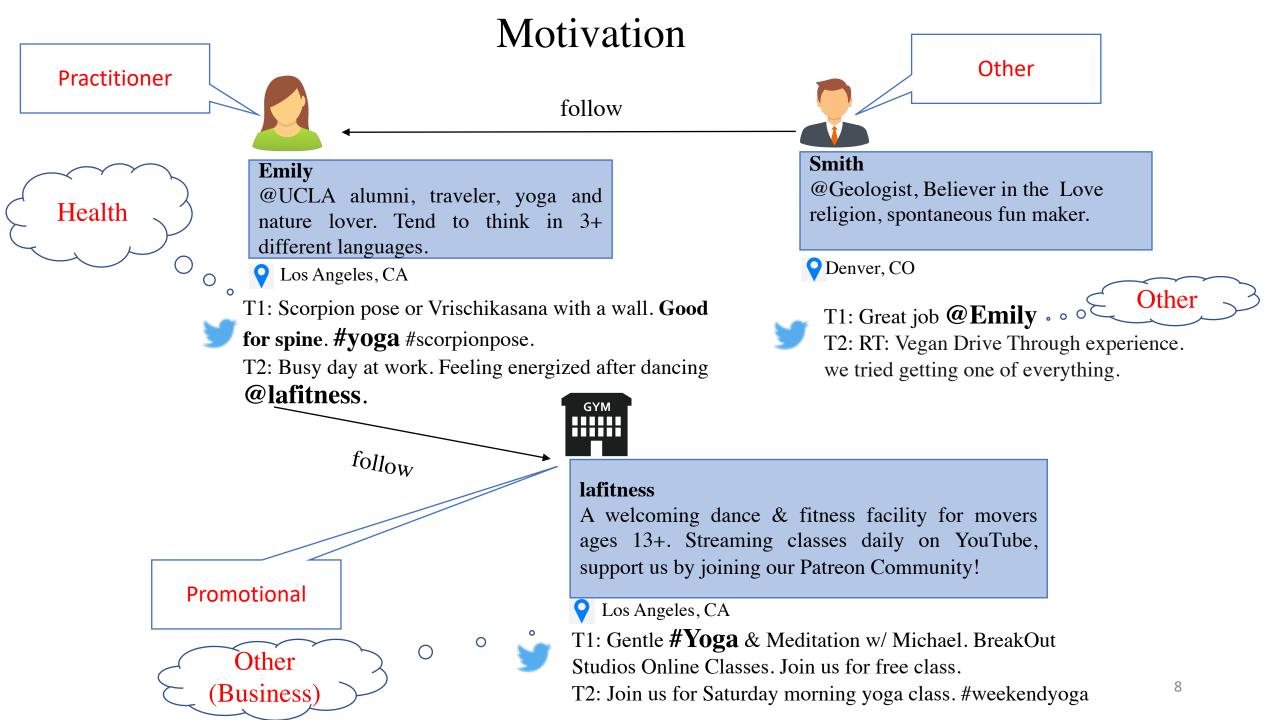

Tunazzina Islam, Dan Goldwasser


Department of Computer Science Purdue University, West Lafayette, IN


IEEE ICSC 2021 Date: January 27-29, 2021







T2: Busy day at work. Feeling energized after dancing @lafitness.

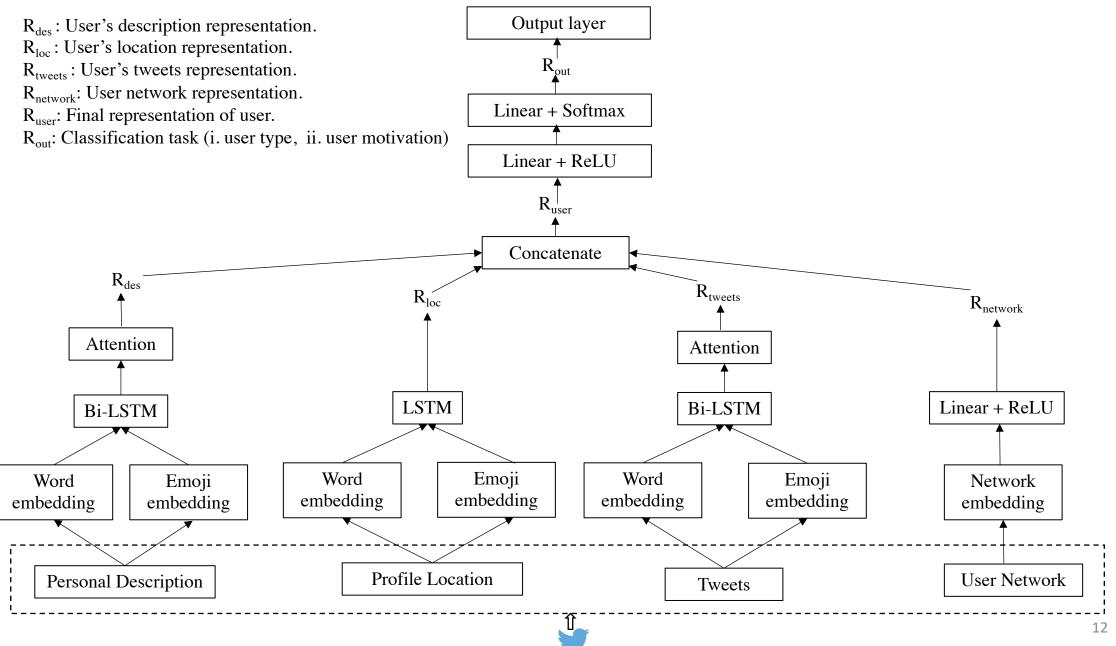
T2: Join us for Saturday morning yoga class. #weekendyoga

Methodology

- We use following sources of information to build our model:
 - 1) Tweet text;
 - 2) User network;
 - 3) Metadata including user location and description.
- Our model employs those sources and then jointly builds a neural network model to generate a dense vector representation for each field and finally concatenates these representations.

Downstream Tasks

We demonstrate our model on two downstream tasks:


1) Finding user type

- 1) Practitioner
- 2) Promotional
- 3) Other
- 2) Finding user motivation
 - 1) Health
 - 2) Spiritual
 - 3) Other

Model

• Yoga User Network (YUN) - a joint embedding model based on the fusion of neural networks with attention mechanism leveraging users' social and textual information to understand user type and motivation.

YUN Model

Dataset

- YUN model
 - ~ 0.4 million yoga-related tweets from Twitter using Twitter streaming API (May to November of 2019) containing specific keywords.
 - \sim 1300 users have at least a yoga-related tweet in their timelines.
 - ~ 3 million of timeline tweets.

Baseline Models

- User type and motivation detection baseline 10 baselines
 - 1. Description only;
 - 2. Location only;
 - 3. Tweets only;
 - 4. Network only;
 - 5. BERT finetuned with Description (Description_BERT);
 - 6. BERT fine-tuned with Location (Location_BERT);
 - 7. BERT fine-tuned with Tweets (Tweets_BERT);
 - 8. joint embedding on description and location (Des + Loc);
 - 9. joint embedding on description, location, and tweets (Des + Loc + Twt);
 - 10. joint embedding on description, location, and network (Des + Loc + Net).

TABLE II: Performance comparisons on test data

Evaluation Metrics:

- Accuracy
- Macro-avg F1 score

	user type		user motivation	
Model	Accuracy	Macro F1 score	Accuracy	Macro F1 score
Description	0.725	0.693	0.782	0.575
Location	0.676	0.563	0.695	0.470
Tweets	0.721	0.687	0.744	0.504
Network	0.752	0.557	0.790	0.541
Description_BERT	0.718	0.681	0.771	0.528
Location_BERT	0.679	0.606	0.695	0.476
Tweets_BERT	0.760	0.669	0.805	0.551
Des + Loc	0.733	0.693	0.775	0.599
Des + Loc + Twt	0.760	0.725	0.794	0.580
Des + Loc + Net	0.775	0.723	0.828	0.647
YUN	0.790	0.742	0.844	0.619

		user type		user motivation	
Net)	Model	Accuracy	Macro F1 score	Accuracy	Macro F1 score
INCL)	Description	0.725	0.693	0.782	0.575
	Location	0.676	0.563	0.695	0.470
	Tweets	0.721	0.687	0.744	0.504
	Network	0.752	0.557	0.790	0.541
.2%	Description_BERT	0.718	0.681	0.771	0.528
	Location_BERT	0.679	0.606	0.695	0.476
	Tweets_BERT	0.760	0.669	0.805	0.551
	Des + Loc	0.733	0.693	0.775	0.599
	Des + Loc + Twt	0.760	0.725	0.794	0.580
-	Des + Loc + Net	0.775	0.723	0.828	0.647
	YUN	0.790	0.742	0.844	0.619

TABLE II: Performance comparisons on test data

YUN (Des + Loc + Twt + N outperforms the baselines.

- Accuracy (user type): 79.0%
- Macro-avg F1 score (user type): 74.2%
- Accuracy (user motivation): 84.4%

TABLE II: Performance comparisons on test data

Ablation study by training individual neural network model for each field i.e., description, location, tweets and network.

	user type		user motivation	
Model	Accuracy	Macro F1 score	Accuracy	Macro F1 score
Description	0.725	0.693	0.782	0.575
Location	0.676	0.563	0.695	0.470
Tweets	0.721	0.687	0.744	0.504
Network	0.752	0.557	0.790	0.541
Description_BERT	0.718	0.681	0.771	0.528
Location_BERT	0.679	0.606	0.695	0.476
Tweets_BERT	0.760	0.669	0.805	0.551
Des + Loc	0.733	0.693	0.775	0.599
Des + Loc + Twt	0.760	0.725	0.794	0.580
Des + Loc + Net	0.775	0.723	0.828	0.647
YUN	0.790	0.742	0.844	0.619

TABLE II: Performance comparisons on test data

Ablation study by training individual neural network model for each field i.e., description, location, tweets and network.

• profile description is the most informative.

	user type		user motivation	
Model	Accuracy	Macro F1 score	Accuracy	Macro F1 score
Description	0.725	0.693	0.782	0.575
Location	0.676	0.563	0.695	0.470
Tweets	0.721	0.687	0.744	0.504
Network	0.752	0.557	0.790	0.541
Description_BERT	0.718	0.681	0.771	0.528
Location_BERT	0.679	0.606	0.695	0.476
Tweets_BERT	0.760	0.669	0.805	0.551
Des + Loc	0.733	0.693	0.775	0.599
Des + Loc + Twt	0.760	0.725	0.794	0.580
Des + Loc + Net	0.775	0.723	0.828	0.647
YUN	0.790	0.742	0.844	0.619

TABLE II: Performance comparisons on test data

Ablation study by training individual neural network model for each field i.e., description, location, tweets and network.

- profile description is the most informative.
- User location has the lower performance.

	user type		user motivation	
Model	Accuracy	Macro F1 score	Accuracy	Macro F1 score
Description	0.725	0.693	0.782	0.575
Location	0.676	0.563	0.695	0.470
Tweets	0.721	0.687	0.744	0.504
Network	0.752	0.557	0.790	0.541
Description_BERT	0.718	0.681	0.771	0.528
Location_BERT	0.679	0.606	0.695	0.476
Tweets_BERT	0.760	0.669	0.805	0.551
Des + Loc	0.733	0.693	0.775	0.599
Des + Loc + Twt	0.760	0.725	0.794	0.580
Des + Loc + Net	0.775	0.723	0.828	0.647
YUN	0.790	0.742	0.844	0.619

TABLE II: Performance comparisons on test data

Ablation study by training individual neural network model for each field i.e., description, location, tweets and network.

- profile description is the most informative.
- User location has the lower performance.
- Excluding user network information (Des + Loc + Twt model) declines the performance of the final model.

	user type		user motivation	
Model	Accuracy	Macro F1 score	Accuracy	Macro F1 score
Description	0.725	0.693	0.782	0.575
Location	0.676	0.563	0.695	0.470
Tweets	0.721	0.687	0.744	0.504
Network	0.752	0.557	0.790	0.541
Description_BERT	0.718	0.681	0.771	0.528
Location_BERT	0.679	0.606	0.695	0.476
Tweets_BERT	0.760	0.669	0.805	0.551
Des + Loc	0.733	0.693	0.775	0.599
Des + Loc + Twt	0.760	0.725	0.794	0.580
Des + Loc + Net	0.775	0.723	0.828	0.647
YUN	0.790	0.742	0.844	0.619

Error Analysis

- Misclassifications
 - Did not use contextualized word embedding for text.
 - Misleading or absence of profile description.
 - Users do not have their profile description in Twitter.
 - Users who provide profile description related to "yoga" but usually retweet yoga-related quotes.
 - Absence of user location information.

Discussion and Future Work

- Misclassifications in user type and motivation detection.
- Expensive data annotation.
- Develop a contextualized model to predict user type and motivation using minimal supervision.
- Use the model to understand users' type and motivation for different lifestyle choices i.e. "keto diet", "veganism".

THANK YOU ③

Slide: https://tunazislam.github.io/files/IEEE_ICSC_YUN.pdf

Questions?

Tunazzina Islam

Department of Computer Science, Purdue University, West Lafayette, IN. Email: islam32@purdue.edu

https://tunazislam.github.io/

