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Public Opinion

• Responsive governance 
• Policy alignment with public interests 
• Societal harmony 
• Continuous policy refinement (Glynn & Huge, 2008; Price, 1988)



Distributed Landscape of Social Media
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Distributed Landscape of Social Media

Users generate and consume a variety of content.
4



5

Analyzing Public Opinion

• Automatically analyzing public 
opinion on social media platforms.
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Analyzing Public Opinion

• Automatically analyzing public 
opinion on social media platforms. 

• Argument Mining. 
• automatically extracts the 

reasons, claims, and talking 
points/arguments. 

• shedding light on how and why 
specific opinions are formed.
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Argument Mining - Previous Works

• Topic Modeling. 
• Shallow Themes. 

• Manual and qualitative coding (Hagen et al., 2022; Nguyen et al., 2021; Del Valle et al., 2020).
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Argument Mining - Previous Works

• Topic Modeling. 
• Shallow Themes. 

• Manual and qualitative coding (Hagen et al., 2022; Nguyen et al., 2021; Del Valle et al., 2020). 
• Theme Discovery (Islam & Goldwasser, 2025; Pacheco et al., 2023; Islam et al.,2023b; Islam & Goldwasser, 2022; Pacheco et al., 2022a). 

• Can not to recognize conflicting arguments under same theme, i.e.,

Argument 1: Alternative energy will 
create more jobs.

Argument 2: Alternative energy will 
take away our jobs.

Theme: 
AltEnergy

Theme: 
Patriotism

Climate Change
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Argument Mining - Previous Works

• Human-in-loop (Pacheco et al. 2022b;a). 
• Costly scalability. 
• Time consuming.
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Machine-in-loop Approach

• Human-in-loop (Pacheco et al. 2022b;a). 
• Costly scalability. 
• Time consuming. 

• Machine-in-the-Loop: LLMs-in-the-Loop. 
• LLMs possess extensive domain insights. 
• Reasoning capabilities. 
• Accelerate the process of refinement.
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Sketch of LLMs-in-the-Loop Approach
• Themes are pre-defined. 

• Theme-specific clustering. 

• Summarizing sub-clusters. 
• Zero-shot multi-document summarization using 

GPT-4 on top-k instances. 

• Generating and refining arguments. 
• Implement a redundancy check to identify and 

merge similar arguments.

GPT-4



12

Sketch of LLMs-in-the-Loop Approach
• Themes are pre-defined. 

• Theme-specific clustering. 

• Summarizing sub-clusters. 
• Zero-shot multi-document summarization using 

GPT-4 on top-k instances. 

• Generating and refining arguments. 
• Implement a redundancy check to identify and 

merge similar arguments. 

• Human evaluation. 
• Quality and relevance of the generated arguments.

GPT-4



13

Sketch of LLMs-in-the-Loop Approach
• Themes are pre-defined. 

• Theme-specific clustering. 

• Summarizing sub-clusters. 
• Zero-shot multi-document summarization using 

GPT-4 on top-k instances. 

• Generating and refining arguments. 
• Implement a redundancy check to identify and 

merge similar arguments. 

• Human evaluation. 
• Quality and relevance of the generated arguments. 

• Mapping instances to arguments. 
• Distance-based approach for mapping. GPT-4



14

Sketch of LLMs-in-the-Loop Approach
• Themes are pre-defined. 

• Theme-specific clustering. 

• Summarizing sub-clusters. 
• Zero-shot multi-document summarization using 

GPT-4 on top-k instances. 

• Generating and refining arguments. 
• Implement a redundancy check to identify and 

merge similar arguments. 

• Human evaluation. 
• Quality and relevance of the generated arguments. 

• Mapping instances to arguments. 
• Distance-based approach for mapping. 

• Repeat: Unassigned ads from iteration1.

GPT-4
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Case Studies

• Climate campaigns. 
• 14k ads (Islam et al. 2023, Islam and Goldwasser 2025),  January 2021 to January 

2022. 

• Stance (e.g., pro-energy, clean-energy) and theme (e.g., support 
climate policy).
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Case Studies

• Climate campaigns. 
• 14k ads (Islam et al. 2023, Islam and Goldwasser 2025),  January 2021 to January 

2022. 

• Stance (e.g., pro-energy, clean-energy) and theme (e.g., support 
climate policy). 

• COVID-19 vaccine campaigns.  
• 9k ads (Islam and Goldwasser 2022),  December 2020 to January 2022. 

• Moral foundation (e.g., care/harm) (Haidt and Graham, 2007) and theme 
(e.g., vaccine equity).
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Evaluation
• Sort the ads according to their semantic distance to their assigned 

arguments. 

• Compute the three quartiles and sample a set of 12 ads per theme, such 
that 3 ads are randomly sampled from each quartile. 

• 300 ads in the 1st iteration and another 300 ads from the 2nd iteration 
from climate case study.  

• 168 ads in the 1st iteration and another 168 ads from the 2nd iteration 
from COVID-19 case study.  

• Manually annotate 936 ads whether the mapping is correct or not.
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Results

Table: Coverage and mapping quality w.r.t. Human Judgments.

• Better performance in the lower distance between ad and argument.  

• Improvement in performance both in coverage and mapping quality after 
subsequent iterations.
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• Comparable results in terms of 
coverage: 

• Arguments from the top k 
instances of a cluster without 
summarizing vs. with 
summarizing.

Table: Ablation study (coverage). sum: summary, thr: threshold.

Ablation Study
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Stance prediction task improves 
when talking points are added 
with text.

Table: Contribution of talking point (tp) in stance classifier 
for climate campaigns dataset.

Downstream Task: Stance Prediction
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Argumentative Cohesion Comparison
• COVID-19 vaccine campaigns. 

• Pearson correlation between arguments and moral foundations. 
• Random 15 arguments. 

• Climate campaigns. 
• Pearson correlation between arguments and stances. 
• Random 25 arguments.
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Argumentative Cohesion Comparison: COVID-19

Baseline: 10 LDA Topics

Baseline: 20 LDA Topics

Ours: After 2nd round of iteration
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Argumentative Cohesion Comparison: Climate

Baseline: 10 LDA Topics

Baseline: 30 LDA Topics

Ours: After 2nd round of iteration
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Demographic Targeting
• Three age categories. 

i.e.,  
• Young people (ages 

13-24) 
• Working-age people 

(ages 25-54) 
• Older population 

(age 55+) 
• Florida and Texas.
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Arguments Shift Triggered by Key Events
• Event1: Hurricane Ida, Date: August 29, 2021.
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Arguments Shift Triggered by Key Events
• Event1: Hurricane Ida, Date: August 29, 2021.
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Arguments Shift Triggered by Key Events
• Event2: Federal COVID-19 vaccine mandate, Date: September 09, 2021.
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Arguments Shift Triggered by Key Events
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Key Takeaways

• Iterative LLMs-in-the-Loop framework for uncovering latent arguments.
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• Newly discovered arguments can cover a larger portion of texts. 
• Map texts -> arguments accurately w.r.t. human judgment. 
• Arguments are more strongly correlated with specific stances or moral 

foundations than the LDA topics.
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Key Takeaways

• Iterative LLMs-in-the-Loop framework for uncovering latent arguments. 
• Quantitative results:  

• Newly discovered arguments can cover a larger portion of texts. 
• Map texts -> arguments accurately w.r.t. human judgment. 
• Arguments are more strongly correlated with specific stances or moral 

foundations than the LDA topics. 
• Talking point information improves the stance classifier performance.  
• Talking points are tailored for demographic targeting. 
• Talking points dynamically shift in response to real world events.
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THANK YOU ☺

Questions?

Tunazzina Islam, Ph.D. 
Department of Computer Science, 

Purdue University, West Lafayette, IN. 
Email: islam32@purdue.edu

Slide: https://tunazislam.github.io/files/LatentArgumentsLLM.pdf 

https://tunazislam.github.io/
@Tunaz_Islam

https://tunazislam.github.io/files/LatentArgumentsLLM.pdf
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