

We connect, inspire and guide women in computing and organizations
that view technology innovation as a strategic imperative.

Particle deposition in grid according to Particle-In-Cell

(PIC) Scheme using Graphical Processing Unit

Tunazzina Islam
Ph.D. Student

Department of Computer Science
Old Dominion University

tislam@cs.odu.edu

Mohammad zubair
Professor

Department of Computer Science
Old Dominion University

zubair@cs.odu.edu

1. INTRODUCTION
Particle-in-Cell (PIC) scheme has important applications in

areas like computational physics, plasma physics,

computational fluid dynamics, quantum chemistry and

molecular dynamics. Among the most challenging and

heretofore unsolved problems in accelerator physics is accurate

simulation of the collective effects in electron beams. When

electron bunches traveling at nearly the speed of light are

forced by accelerator magnets to traverse a curved

trajectory, they emit bright ultraviolet or x-ray radiation. If

the radiation wavelength is larger than the electron bunch

itself, coherent synchrotron radiation (CSR) is produced.

CSR leads to a host of deleterious effects, such as emittance

degradation and micro-bunching instability, thereby

degrading or entirely erasing the electron beam’s

experimental usefulness. For simulation of collective effects

in electron beams that severely degrade beam quality, first

step in mitigating the damaging effects of CSR. One of the

important parts for simulating CSR and other collective

effects in an electron beam using state-of-the art computing

platforms is Particle Deposition. This is computationally

intensive step of the simulation. We implemented parallel

algorithm for particle deposition using Graphical

Processing Unit (GPU) with CUDA. Speed up was

calculated by comparing parallel method with sequential

method.

2. BACKGROUND AND RELATED WORK
Particle-in-Cell method is a well-established first-principle

model. It is an application of High Performance

Computation. B. Terzić, A. Godunov [3] presented a new

model for self-consistent simulations of coherent

synchrotron radiation effect in charged particle beams. The

model is of the particle-in-cell variety. It is computation

intensive, as the number of particles can vary from many

thousands to many billions. V. K. Decyk, T. V. Singh [2]

developed new parameterized Particle-in-Cell algorithm

and data structure for emerging multi-core and many-core

architectures. K. Arumugam, A. Godunov, D. Ranjan, B.

Terzić, and M. Zubair [1] proposed a fundamentally new, high-

fidelity, and high-performance model for simulating CSR and

other collective effects in an electron beam using state-of-the art

computing platforms.

3. METHOD
In this section, we will present the methodology of our

process.

3.1 CUDA Overview
The Compute Unified Device Architecture (CUDA) [4] is a

programming model developed by NVIDIA for general

purpose computing on GPUs. The CUDA programming

model is based upon the concept of C function-like kernels

which are executed multiple times in parallel by multiple

different threads. The threads are organized into one-, two-

or three-dimensional blocks. A group of 32 adjacent threads

forms a warp. Threads are created, managed, scheduled,

and executed in warps. Threads within the same block can

cooperate by sharing data and synchronizing their

execution. Threads within a warp can communicate and

exchange information even more efficiently than threads

within a block. However, threads in different blocks cannot

cooperate with each other efficiently. The threads of a

block execute concurrently on one streaming

multiprocessor (SM) in the GPU. On-chip shared memory

and registers are also located on the SMs. The amount of

on-chip memory is very limited in comparison to the total

global memory available on the GPU. Global memory is the

main memory of the GPU but it is located off-chip and

therefore has a considerable latency. Shared memory

latency is roughly 100x lower than global memory latency.

3.2 Particle Deposition
The beam bunch was sampled by point-particles. The

Particle-in-cell method treats each point-particle as a

collection of computer particles. As (Number of particles)

We connect, inspire and guide women in computing and organizations
that view technology innovation as a strategic imperative.

>> (Number of grids), the execution time was dominated by

the charge deposition of the particles.

 Figure 1. Depositing Charge to the Grids.

In Figure1 particle "i" is at position (x1, y1) which belongs

within the grid (Δx1, Δy1). The charge density of the

particle "i" will be deposited on neighboring grid points (j,

k), (j+1, k), (j, k+1) and (j+1, k+1) according to PIC.

Two approaches were followed to deposit particles:

 One thread handles one particle (Naïve Approach)

[2].

 The charge on particle was split into 4

parts, which were then deposited to the 4

nearest grid points.

 One thread handles one cell (multiple particles)

[2].

 Sort particles according to cell.

 Assign a CUDA block to a cell block.

 Perform a per-block, shared memory,

segmented scan to compute density sum

for each cell.

 Sum cached copy to global grid.

3.3 Why Two Approaches
The charge density has a data dependency or data hazard,

since particles in different threads can attempt to

simultaneously update the same grid point. There are

several possible methods to deal with this data dependency.

 One way to use Atomic operation [4]. But atomic

operations are considered to be very slow in the

current NVIDA hardware because atomicity

prevents parallel execution by stalling other

threads in the code segment.

 Another way to partition memory with extra

guards cells [2] so that each thread writes to a

different location, then add up those locations that

refer to the same grid. No need of Atomic

operation.

3.4 Challenge
Particle deposition will occur multiple time steps. The most

challenging part of implementing 2nd approach is

maintaining the particle order. For first time step we did

sorting as a preprocessing. Then rest of time steps we

handled sorting different way. As the cost of maintaining

the particle order depends on how many particles are

leaving a grid, we reduced it by defining a sorting cell to

contain multiple grid points. In this case to resolve data

hazard Shared Memory for each thread was used.

4. RESULTS AND FINDINGS
In this section, we summarize our experiment results and

findings. The massively parallel architecture makes GPUs

very effective for algorithms where processing of large

blocks of data can be executed in parallel. The

computationally intensive nature of PIC requires

a high-performance implementation. Various optimization

techniques are applied to maximize the utilization of the

GPU. For 10000000 particles and 256 * 256 grid in Naïve

Approach 15 times speed up (Table 1) and for 2nd approach

407 times speed up (Table 2) have been got compare to

sequential method.

4.1 Performance Analysis
Both sequential code and parallel code were implemented

for particle deposition. First we started with 1000 particles

and 32 * 32 grids. Then we fixed the grid size and

incremented the number of particles up to 10000000

particles. After doing that we fixed the number of particles

to 10000000 and incremented the grid size as 64*64,

128*128, 256*256. We Measured execution time for both

CPU and GPU as well as the speed up. Correctness of our

code was also assured by matching result got from

sequential implementation and parallel implementation.

Table 1. Speed up from 1st approach: 1 thread→1 particle

Number

of

Particles

Grid

Size

Execution

Time in

CPU

(milliseco

nds)

Executio

n Time

in GPU

(millisec

onds)

Speed

Up

(cpu_ti

me/gpu

_time)

1000 32*32 0.06992 0.041088 1.7

We connect, inspire and guide women in computing and organizations
that view technology innovation as a strategic imperative.

10000 32*32 0.511264 0.128928 3.97

100000 32*32 4.91392 1.15616 4.25

1000000 32*32 43.0989 10.1378 4.25

10000000 32*32 436.877 99.7978 4.38

10000000 64*64 437.65 46.0646 9.5

10000000 128*128 438.743 32.88 13.34

10000000 256*256 450.719 29.822 15.11

Table 2. Speed up from 2nd approach: 1 thread→1 cell

Number of

Particles

Grid Size Execution

Time in

CPU

(millisecond

s)

Execution

Time in

GPU

(milliseco

nds)

Speed

Up

(cpu_tim

e/gpu_ti

me)

1000 32*32 0.085952 0.044032 1.95

10000 32*32 0.26848 0.075232 3.57

100000 32*32 2.15651 0.366272 5.88

1000000 32*32 21.0361 3.11658 6.75

10000000 32*32 210.061 30.2322 6.95

10000000 64*64 209.906 7.91629 26.52

10000000 128*128 218.777 2.00618 109.05

10000000 256*256 224.377 0.550848 407.33

5. CONCLUSION
The first-principle nature of the PIC model determines that

PIC simulations require intense computation. Modern GPU

provides a significant amount of raw compute power and

bandwidth, both about an order of magnitude more than a

conventional CPU. We implemented 2D PIC code in GPU

for simulation of collective effects, including heretofore

prohibitive CSR effects, in electron beams. Computation of

PIC was memory bound.

In future, we have plan to extend the algorithm to gain more

speed up and improve performance like avoiding the slow

down due to the additional usage of shared memory, to

allow a thread to be responsible for more than one cell.

6. REFERENCES
[1] K. Arumugam, A. Godunov, D. Ranjan, B. Terzić, M.

Zubair, “High-fidelity simulation of collective effects

in electron beams using an innovative parallel method”.

[2] V. K. Decyk, T. V. Singh, “Adaptable Particle-in-Cell

Algorithms for Graphical Processing Units”.

[3] B. Terzić, A. Godunov“A New 2D Particle-In-Cell

Model For Coherent Synchrotron Radiation Effects on

Beam Dynamics”.

[4] NVIDIA CUDA TM Programming Guide Version 3.0.,

NVIDIA Corporation.

