
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Particle deposition in grid according to Particle-In-Cell Scheme using 

Graphical Processing Unit
Tunazzina Islam, Kamesh Arumugam, Mohammad Zubair, Desh Ranjan, Balša Terzić, Alexander Godunov

Interdisciplinary Research Team from Dept. Of Computer Science & Dept. Of Physics, Old Dominion University, VA, USA

Introduction

Particle-in-Cell (PIC) scheme has important applications in areas like

computational physics, plasma physics, computational fluid dynamics,

quantum chemistry and molecular dynamics. Among the most challenging

and heretofore unsolved problems in accelerator physics is accurate

simulation of the collective effects in electron beams. When electron

bunches traveling at nearly the speed of light are forced by accelerator

magnets to traverse a curved trajectory, they emit bright ultraviolet or x-ray

radiation [1]. If the radiation wavelength is larger than the electron bunch

itself, coherent synchrotron radiation (CSR) is produced. CSR leads to a

host of deleterious effects, such as emittance degradation and micro-

bunching instability, thereby degrading or entirely erasing the electron

beam’s experimental usefulness. For simulation of collective effects in

electron beams that severely degrade beam quality, first step in mitigating

the damaging effects of CSR. One of the important parts for simulating CSR

and other collective effects in an electron beam using state-of-the art

computing platforms is Particle Deposition. This is computationally intensive

step of the simulation. We implemented parallel algorithm for particle

deposition using Graphical Processing Unit (GPU) with CUDA. Speed up

was calculated by comparing parallel method with sequential method.

Method

Performance Analysis

Both sequential code and parallel code were implemented for particle

deposition. First we started with 1000 particles and 32 * 32 grids. Then we

fixed the grid size and incremented the number of particles up to 10000000

particles. After doing that we fixed the number of particles to 10000000 and

incremented the grid size as 64*64, 128*128, 256*256. We Measured

execution time for both CPU and GPU as well as the speed up. Correctness

of our code was also assured by matching result got from sequential

implementation and parallel implementation.

Challenge

Conclusion

Particle deposition will occur multiple time steps. The most challenging part

of implementing 2nd approach is maintaining the particle order. For first time

step we did sorting as a preprocessing. Then rest of time steps we handled

sorting different way. As the cost of maintaining the particle order depends

on how many particles are leaving a grid, we reduced it by defining a

sorting cell to contain multiple grid points. In this case to resolve data

hazard Shared Memory for each thread was used.

The massively parallel architecture makes GPUs very effective for

algorithms where processing of large blocks of data can be executed in

parallel. The computationally intensive nature of PIC requires a high-

performance implementation. Various optimization techniques are applied

to maximize the utilization of the GPU. For 10000000 particles and 256 *

256 grid in Naïve Approach 15 times speed up (Table 1) and for 2nd

approach 407 times speed up (Table 2) have been got compare to

sequential method.

The beam bunch was sampled by point-particles. The Particle-in-cell

method treats each point-particle as a collection of computer particles. As

(Number of particles) >> (Number of grids), the execution time was

dominated by the charge deposition of the particles.

Figure 1. Depositing Charge to the Grids

In Figure1 particle "i" is at position (x1, y1) which belongs within the grid

(Δx1, Δy1). The charge density of the particle "i" will be deposited on

neighboring grid points (j, k), (j+1, k), (j, k+1) and (j+1, k+1) according to

PIC.

Two approaches were followed to deposit particles:

 One thread handles one particle (Naïve Approach) [2].

 The charge on particle was split into 4 parts, which were then

deposited to the 4 nearest grid points.

 One thread handles one cell (multiple particles) [2].

 Sort particles according to cell.

 Assign a CUDA block to a cell block.

 Perform a per-block, shared memory, segmented scan to compute

density sum for each cell.

 Sum cached copy to global grid.

Why Two Approaches?

The charge density has a data dependency or data hazard, since particles

in different threads can attempt to simultaneously update the same grid

point. There are several possible methods to deal with this data

dependency.

One way to use Atomic operation [3]. But atomic operations are

considered to be very slow in the current NVIDA hardware because

atomicity prevents parallel execution by stalling other threads in the code

segment.

Another way to partition memory with extra guards cells [2] so that each

thread writes to a different location, then add up those locations that refer

to the same grid. No need of Atomic operation.

Results and Findings

Number of 

Particles

Grid Size Execution Time 

in CPU 

(milliseconds)

Execution 

Time in GPU 

(milliseconds)

Speed Up 

(cpu_time/g

pu_time)

1000 32*32 0.06992 0.041088 1.7

10000 32*32 0.511264 0.128928 3.97

100000 32*32 4.91392 1.15616 4.25

1000000 32*32 43.0989 10.1378 4.25

10000000 32*32 436.877 99.7978 4.38

10000000 64*64 437.65 46.0646 9.5

10000000 128*128 438.743 32.88 13.34

10000000 256*256 450.719 29.822 15.11

Table 1. Speed up from 1st approach: 1 thread → 1 particle

Table 2. Speed up from 2nd approach: 1 thread → 1 cell

Number of 

Particles

Grid Size Execution Time 

in CPU 

(milliseconds)

Execution 

Time in GPU 

(milliseconds)

Speed Up 

(cpu_time/gp

u_time)

1000 32*32 0.085952 0.044032 1.95

10000 32*32 0.26848 0.075232 3.57

100000 32*32 2.15651 0.366272 5.88

1000000 32*32 21.0361 3.11658 6.75

10000000 32*32 210.061 30.2322 6.95

10000000 64*64 209.906 7.91629 26.52

10000000 128*128 218.777 2.00618 109.05

10000000 256*256 224.377 0.550848 407.33

The first-principle nature of the PIC model determines that PIC simulations

require intense computation. Modern GPU provides a significant amount of

raw compute power and bandwidth, both about an order of magnitude more

than a conventional CPU. Computation of PIC was memory bound.

In future, we have plan to extend the algorithm to gain more speed up and

improve performance like avoiding the slow down due to the additional

usage of shared memory, to allow a thread to be responsible for more than

one cell.

References

[1] B. Terzić, A. Godunov“A New 2D Particle-In-Cell Model

For Coherent Synchrotron Radiation Effects on Beam

Dynamics”.

[2] V. K. Decyk, T. V. Singh, “Adaptable Particle-in-Cell

Algorithms for Graphical Processing Units”.

[3] NVIDIA CUDA TM Programming Guide Version 3.0.,

NVIDIA Corporation.


