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Climate Change

One of the most urgent challenges of the 21st
century.

Requires broad public engagement and
effective communication to drive

environmental action (Moritz & Agudo, 2013, Dessler &
Theater, 1995).




Climate Debate in Social Media

One of the most urgent challenges of the 21st
century.

Requires broad public engagement and
effective communication to drive

environmental action (Moritz & Agudo, 2013; Dessler &
Theater, 1995).

Social media has become a key arena for
climate communication.

Empowers organizations, activists, and
policymakers to:

» Disseminate information, Mobilize public

support, Shape climate discourse (vosek, 2020;
Hestres & Hopke, 2017; Adger et al., 2003).




Microtargeting

Targeted Messaging Power

e Enables tailoring of messages to specific
demographics.

* Increases message relevance, engagement,
and persuasive Impact (Bioomfield & Tillery, 2019;
Walter et al., 2018; Stoddart et al., 2016).

e Risk reinforcing bias, exclusion, and
inequity — raising critical questions about
fairness and transparency in digital climate
communication.




Microtargeting in Climate Debate

Ad Sourcel Ad Source2

Climate change affects all people
in every corner of the globe. Take
action and bring real change to
wherever you call home. Become
a TCl Ambassador today.

Targets Female

|
22

Home electricity is a major source
of carbon pollution. If every parent
made this pledge "', we could
help protect your kids' future.

‘ ‘ Ad Source3

Onhio Propane is the clean fuel heating
rural-homes and fueling appliances.
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Microtargeting in Climate Debate

* Problem: Limited understanding of P

. . ) - ‘ ree Ad Source. 3
how microtargeting strategies are / - @
crafted and whether they're fair or \m Sy

Climate change affects all people

. .
blas ed 1G] O G T2 (] 2,05, IEe Home electricity is a major source Ohio Propane is the clean fuel heating
* Lol e L) [C2 CIETE DL of carbon pollution. If every parent rural-homes and fueling appliances.
wherever you call home. Become made this pledge ', we could
aTCl Ambassad<|)r today. help protect your kids' future. l

* Goal: Leverage LLMs to analyze 243 @ T
microtargeting and evaluate
demographic targeting and
fairness.



Research Questions (RQ)

 RQ1: Can LLMs identify targeted demographics and explain
their reasoning?

* RQ2: What are the recurring themes and aspects of
explanations provided by LLMs?

 RQ3: How fair are LLM predictions across demographic
groups”?



Dataset: Climate Campaigns Case Study

* Source
« Based on Islam et al. (2023b) and Islam & Goldwasser (2024a)
e Corpus: 21,372 English climate-related Meta ads (U.S.)
* Time span: Jan 2021 — Jan 2022

« Ad Attributes:
« Ad ID, description, body, funding entity, spend, impressions
» Impression breakdowns by: Gender, Age, Location: U.S. state level
 Demographics Indicators:
* Gender:
- Male,
- Female
* Age groups:
- Young adults 18-24,
- Early working 25-44,
- Late working 45-64,
- Seniors 65+



Dataset: Climate Campaigns Case Study
» Targeting Definition

* Meta API does not provide explicit targeting _

* Targeting inferred from exclusive impression distributions
- Ads viewed only by one gender or only by one age group
- Ads overlapping multiple categories excluded

* Filtered Dataset

Category Targeting Basis

Gender-targeted Male-only / Female-only 106

Age-targeted Exclusive to one age group 121
Total (after filtering) - 227



Experimental Setup

» Task: Identify the targeted demographic in a text and provide an
explanation.
* Pipeline steps
* Gender prediction with explanation: Given a text, predict the
targeted gender and justify the choice.

* Age group prediction with explanation: Given a text, predict
the targeted age group and justify the choice.
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Experimental Setup

* Tools used: OpenAl’s latest LLM (o1-preview)
* Baseline comparisons: LR1r.;pr, BERT, Llama 3, Mistral Large 2
* Fairness metrics:

» Demographic Parity,

» Equal Opportunity,
» Predictive Equality.
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Results

* Prediction Accuracy Across Demographic Groups

Prediction Accuracy Across Demographic Groups
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Results

Model Demo. | Acc. (%) | F1 (%)
LR_tf-idf gender 69.00 65.00
LR_tf-1df age 73.00 31.00
BERT gender 72.00 70.00
BERT age 70.00 26.00
Llama 3 gender 80.19 79.677
Llama 3 age 58.68 36.84
Mistral Large 2 | gender 82.08 82.07
Mistral Large 2 | age 74.38 48.68
ol-preview gender 90.57 90.35
ol-preview age 85.95 71.00

Table 1: Baseline Comparisons.
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Results

Gender p-value Conclusion

Male 5.35 x 10~7 | Reject Hy

Female | 5.95 x 1071 | Reject Hy
Table 2: Significance tests by subgroup

(gender).

Age Group p-value Conclusion
Senior 4.66 x 10~1 | Fail Reject Hy
EarlyWorking | 1.04 x 1073° | Reject Hg
Young 5.76 x 10711 | Reject Hy
Late Working | 4.23 x 1072 | Reject Hy

Model Demo. | Acc. (%) | F1 (%)
LR_tf-idf gender 69.00 65.00
LR_tf-1df age 73.00 31.00
BERT gender 72.00 70.00
BERT age 70.00 26.00
Llama 3 gender 80.19 79.677
Llama 3 age 58.68 36.84
Mistral Large 2 | gender 82.08 82.07
Mistral Large 2 | age 74.38 48.68
ol-preview gender 90.57 90.35
ol-preview age 85.95 71.00

Table 3: Significance tests by subgroup

(age).

Table 1: Baseline Comparisons.
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Thematic Insights (Explanations from LLM)

Roles as Caregivers,
Environmental Advocates, and
Socially Conscious Individuals
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Fairness Evaluation

Fairness Metrics Comparison by Gender Female

Minor bias favoring females. * Minor bias favoring late working
age group.
 Significant bias against seniors.
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Key Takeaways

LLMs as Auditors

 LLMs can act as independent, third-party auditors of microtargeted
climate ads.

 They can identify intended audiences, explain reasoning, and reveal
fairness issues that are otherwise opaque.

Strong Predictive Capability

* Gender prediction: Highly accurate (Female = 94.92%, Male = 85.10%).

e Age prediction: More variable — highlights complexity of age-based
targeting.



Key Takeaways

Explainable Insights

 LLM-generated explanations support creation of a reusable
taxonomy of thematic appeals used 1n ads.

e These explanations make demographic targeting interpretable
and actionable for researchers and practitioners.

Fairness & Equity

 Fairness analysis reveals disparities across gender and age groups.

 Demonstrates the need for inclusive, equitable ad-targeting and bias-
aware Al evaluation frameworks.
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THANK YOU ©

Slide: https://tunazislam.github.io/files/PosthocClimateLLM.pdf

Tunazzina Islam, Ph.D.
Department of Computer Science,
Purdue University, West Lafayette, IN.
Email: islam32@purdue.edu

&) https://tunazislam.github.io/
@Tunaz_Islam

Questions?

e

PURDUE

UNIVERSITY.
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