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Tweet 1: Swimming is great. It’s a perfect workout. #fitness #wellness
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Human prediction




Tweet:

Motivation

Swimming|is great. It’s a perfect workout. #fitness #wellness

Human Explanation

Please look at the first
word of the tweet.
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Motivation

Tweet: Swimming is great. It’s a perfect workout. #fitness #wellness

What is the prediction by ML algorithm? Black box:

Fitness and wellness Statistical —p Results
procedures or

data science
Swimming algorithms
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Tweet: Swimming is great. It’s a perfect workout. #fitness #wellness

Fitness and wellness U Q

~ ’ >
Prediction
SWimming Generation
Explainable ML

What 1s the prediction by ML algorithm?
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LIME

Generates distorted versions of the tweets.
Predicts probabilities for these distorted tweets using the black-box classifier.
Trains another classifier to predict output of a black-box classifier on the original tweets.

LIME Evaluation:
* Accuracy score.
* KL divergence.



LIME Evaluation- Accuracy score

* Cosine distance between generated sample and original tweets.

* Given two vectors of attributes, A and B, the cosine similarity, cos(0)

1s represented as following:
A.B

1Al |IB]]

similarity = cos(6) = |

n 2 n 2
\/ i=1 A \/Zi=1 B;

where A, and B, are components of vector A and B respectively.



LIME Evaluation- KL divergence

Measures the difference between two probability distributions.

For distributions of P and Q of a continuous random variable, the

KL divergence 1s defined as following:
00 (x)
Dk, (PlIQ) = f_oo p(x) log (%) dx

Weighted by distance.

KL divergence 0.0 means a perfect match.



Topic Modeling

%
Topic Modeling

Tweets

* Latent Semantic Analysis (LSA)

* Non-negative Matrix Factorization (NMF)
* Latent Dirichlet Allocation (LDA)

Identified Topics
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How to choose optimal Number of Topics?

* Build many LSA, LDA, NMF models with different values of number of topics
(k).

* pick k with highest coherence value.



Optimal Number of Topics vs Coherence Score LSA

K=2
\ Coherence Value = 04495

0.44 -

0.42

0.40

Coherence

0.38 1

0.36 1

0.34

Number of Topics
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Topics using LSA

Topicl Topic2
yoga diet
everi vegan
life fit
job day
remember new
goe like
woman beyonce
everyone amp
cook eat

therapy workout



Topics using LSA

Topicl Topic2
yoga diet
everi vegan * unable to capture the meanings
life fit of words.
job day
remember Cew * lower accuracy
goe like
woman beyonce
everyone amp
cook eat

therapy workout



Optimal Number of Topics vs Coherence Score NMF

K=4
Coherence Value = 0.6404

0.64 -
Topic coherence measure TC-W2V
0.631
0.62 1
E’ 0.61 -

0.60 A

0.59 1
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Topics using NMF
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Know keto vegetarian today
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Optimal Number of Topics vs Coherence Score LDA

K=4
Coherence Value = 0.3871

0.38 1 /\

0.36 A
0.34 1

0.32 1

Coherence

0.30 1

0.28 1

0.26 A

Number of Topics
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Visualization of Topics- pyLDAVIS
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Marginal topic distribtion great

Overall term frequency
2% I Estimated term frequency within the selected topic

5% 1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w I topic t) = A * p(w I t) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014)
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Visualization of Topics- pyLDAVIS

Slide to adjust relevance metric:(2) : [ |
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Manual Annotation (Train/Test data)

* Intent of tweets

* 500 tweets from train data

* 500 New tweets for test data

* Calculate accuracy with ground truth
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times a week. I’'m lighter and much happier now.
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Explanation Observation 1
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Explanation Observation 1

Tweet 1: [ lost 28kg / 61 Ibs in 6 months! I changed my diet and went gym 5/6
times a week. I’'m lighter and much happier now.

Topic 1

Annotated topic: Topic 1 Jiot

workout

Predicted topic: Topic 1 new
g0
Mean KL Divergence= 0.025 day
beyonce
get
today
bitch

gym

Accuracy Score= 94 %




Explanation Observation 12 topic

Tweet 1: [ lost 28kg / 61 [bs in 6 months! |

changed my diet and went gym 5/6 times a week.

I’'m lighter and much happier now.

Annotated topic: Topic 1
Predicted topic: Topic 1
Mean KL Divergence= 0.025

Accuracy Score= 94 %

incomprehensible

y=0 (probability 0.007, score -4.923) top features

Contribution’  Feature
-0.551 <BIAS>
-4.373  Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my diet and went gym 5/6 times a week. i'm lighter and much happier now.

Topic 1

diet
workout
new
go
day
beyonce
get
today
bitch

gym

y=1 (probability 0.893, score 2.409) top features

Contribution’  Feature
+3.039  Highlighted in text (sum)
-0.630 <BIAS>

i lost 28kg / 61 Ibs in 6 months! i changed my diet and went gym 5/6 times a week. i'm lighter and much happier now.

y=2 (probability 0.087, score -2.324) top features

Contribution’  Feature
-0.589 <BIAS>
-1.735 Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my @iéf and went gym 5/6 times a week. i'm lighter and much happier now.

y=3 (probability 0.005, score -5.229) top features

Contribution?  Feature
-0.579 <BIAS>
-4.650 Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my diet and went gym 5/6 times a week. i'm lighter and much happier now.

y=4 (probability 0.008, score -4.847) top features

Contribution’ Feature
-0.243 <BIAS>
-4.605 Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my @igf and went gym 5/6 times a week. i'm lighter and much happier now.




Explanation Observation 1

Tweet 1: [ lost 28kg / 61 [bs in 6 months! |

changed my diet and went gym 5/6 times a week.

I’'m lighter and much happier now.

Annotated topic: Topic 1
Predicted topic: Topic 1
Mean KL Divergence= 0.025
Accuracy Score= 94 %
Prediction Probability= 0.89
Score= 2.4

Contribution= +ve

y=0 (probability 0.007, score -4.923) top features

Contribution’  Feature
-0.551 <BIAS>
-4.373  Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my diet and went gym 5/6 timgs & week. i'm lighter and much happier now.

Topic 1

diet
workout
new
go
day
beyonce
get
today
bitch

gym

y=1 (probability 0.893, score 2.409) top features

Contribution’  Feature
+3.039  Highlighted in text (sum)
-0.630 <BIAS>

i lost 28kg / 61 Ibs in 6 months! i changed my diet and went gym 5/6 times a week. i'm lighter and much happier now.

y=2 (probability 0.087, score -2.324) top features

Contribution’  Feature
-0.589 <BIAS>
-1.735 Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my @iéf and went gym 5/6 times a week. i'm lighter and much happier now.

y=3 (probability 0.005, score -5.229) top features

Contribution?  Feature
-0.579 <BIAS>
-4.650 Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my diet and went gym 5/6 times a week. i'm lighter and much happier now.

y=4 (probability 0.008, score -4.847) top features

Contribution’ Feature
-0.243 <BIAS>
-4.605 Highlighted in text (sum)

i lost 28kg / 61 Ibs in 6 months! i changed my @igf and went gym 5/6 times a week. i'm lighter and much happier now.
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Explanation Observation 2
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Explanation Observation 2

Tweet 2: Swimming is great. It’s a perfect workout.

#fitness #wellness

Annotated topic: Topic 3
Predicted topic: Topic 4
Mean KL Divergence= 0.061
Accuracy Score= 92 %
Prediction Probability= 0.16
Score= -1.75

Contribution= -ve

Topic 3

y=0 (probability 0.002, score -6.325) top features

Contribution’  Feature

Topic 4

SWimming

swim
day
much
support
really
try
always
relationship
pool

fitness
amp

wellness

health
time
great
look
hiking
make
love

0.663 <BIAS>
5662 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fithess #wellness

y=1 (probability 0.023, score -3.774) top features

Contribution’ Feature
-0.487 <BIAS>
-3.287 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fitness #Wellness

y=2 (probability 0.000, score -8.224) top features

Contribution’ Feature
-0.568 <BIAS>
-7.657 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fitness #wellness

Topic 3

y=3 (probability 0.155, score -1.745) top features

Contribution’ Feature
-0.651 <BIAS>
-1.094 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fithness #wellness

y=4 (probability 0.819, score 1.288) top features

Contribution’  Feature
+1.501 Highlighted in text (sum)
-0.213 <BIAS>

swimming is great. it's a perfect workout. #fitness #wellness




Explanation Observation 2

Tweet 2: Swimming is great. It’s a perfect workout.

#fitness #wellness

Annotated topic: Topic 3
Predicted topic: Topic 4
Mean KL Divergence= 0.061
Accuracy Score= 92 %
Prediction Probability= (.82
Score=1.3

Contribution= +ve

Topic 3

Topic 4

SWimming

swim
day
much
support
really
try
always
relationship
pool

fitness
amp

wellness

health
time
great
look
hiking
make
love

y=0 (probability 0.002, score -6.325) top features

Contribution’  Feature
-0.663 <BIAS>
5.662 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fithess #wellness

y=1 (probability 0.023, score -3.774) top features

Contribution’ Feature
-0.487 <BIAS>
-3.287 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fitness #Wellness

y=2 (probability 0.000, score -8.224) top features

Contribution’ Feature
-0.568 <BIAS>
-7.657 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fitness #wellness

y=3 (probability 0.155, score -1.745) top features

Contribution’ Feature
-0.651 <BIAS>
-1.094 Highlighted in text (sum)

swimming is great. it's a perfect workout. #fithness #wellness

Topic 4

y=4 (probability 0.819, score 1.288) top features

Contribution’  Feature
+1.501 Highlighted in text (sum)
-0.213 <BIAS>

swimming is great. it's a perfect workout. #fitness #wellness




Future Work

e [s there bias in data?

* Observe Scalability.



Tweets

summary

Topic Modeling

LSA
NMF
LDA

Explaining LDA model prediction using LIME.

Ex-Twit: Explainable Twitter
Mining on Health Data

55




Tweets

QUESTION?

Topic Modeling

LSA
NMF
LDA

Explaining LDA model prediction using LIME.

Ex-Twit: Explainable Twitter
Mining on Health Data

56




THANK YOU

Paper link: https://arxiv.org/abs/1906.02132

Slide: https://tunazislam.github.io/files/SocialNLP IJCAI 2019 Tunaz.pdf

Tunazzina Islam

Ph.D. Student PURDUE

Department of Computer Science UNIVERSITY

Purdue University, West Lafayette

] islam32@purdue.edu % https://tunazislam.github.io/ @Tunaz_lIslam

57


mailto:islam32@purdue.edu
https://tunazislam.github.io/
https://arxiv.org/abs/1906.02132
https://tunazislam.github.io/files/SocialNLP_IJCAI_2019_Tunaz.pdf

Backup Slides



Manual Annotation

e Intent of tweets.

* For example:
* Tweet 1: Learning some traditional yoga with my good friend.

* Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness
#core #abs #diet #gym #bodybuilding #workout #yoga



Manual Annotation

e Intent of tweets.

* For example:
* Tweet 1: Learning some traditional yoga with my good friend.

* Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness
#core #abs #diet #gym #bodybuilding #workout #yoga

Yoga activity

Workout, Diet




Manual Annotation

e Intent of tweets.

* For example:

* Tweet 1: Learning some traditional yoga with my good friend. Topic 2
* Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness Tooic 1
#core #abs #diet #gym #bodybuilding #workout #yoga OPIc



