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Twitter Data Collection
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Methodology of Correlation Mining
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Methodology of Correlation Mining
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Single Node Kafka Broker 

Single Kafka Topic–
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Topic Modeling Methodology

Bag of Words
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Topic Modeling Methodology

Bag of Words
(BoW) Topic Model

• term-document matrix 
(occurrence of terms in each 
document)

• Rows = words
• columns = tweets
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Topic Modeling Methodology

Bag of Words
(BoW) Topic Model

• Latent Semantic Analysis
• Singular value decomposition

• Non-negative Matrix Factorization
• Matrices are non-negative 
• Normalization with TF-IDF to 

give more weight to the 
“more” important terms

• Latent Dirichlet Allocation 
• Dirichlet distribution
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How to choose optimal Number of Topics?

• Build many LSA, LDA, NMF models with different values of number of topics 
(k).
• pick k with highest coherence value.
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Optimal Number of Topics vs Coherence Score LSA
K = 2
Coherence Value = 0.4495 
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Topics using LSA
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Topics using LSA
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• highly dense matrix

• unable to capture the meanings 
of words.

• lower accuracy
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Optimal Number of Topics vs Coherence Score NMF
K = 4
Coherence Value = 0.6404

• Topic coherence measure TC-W2V
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Topics using NMF
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Topics using NMF
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Topics using NMF
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Topics using NMF
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Topics using NMF
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Optimal Number of Topics vs Coherence Score LDA
K = 4
Coherence Value = 0.3871
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Topics using LDA
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Topics using LDA
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Visualization of Topics- pyLDAVIS

29Online link: https://tunazislam.github.io/files/LDA_Visualization_t4.html
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Visualization of Topics- pyLDAVIS

30Online link: https://tunazislam.github.io/files/LDA_Visualization_t4.html

https://tunazislam.github.io/files/LDA_Visualization_t4.html


Visualization of Topics- pyLDAVIS
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Visualization of Topics- pyLDAVIS

32
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Topic Inference (Train data)
• Observing dominant topic, 2nd dominant topic and its percentage of contribution in each 

Tweet.
Example: Dominant Topic

diet 
workout 
new 
go
day 
beyonce
get
today 
bitch
gym

2nd Dominant Topic

vegan 
yoga
job
every_woman
cooks_goe
therapy_remember
life_juggle
everyone_birthday
eat
boyfriend

61% 18%

Topic 2 Topic 1
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Topic Inference on New Tweets (Test data)
• Observing dominant topic, 2nd dominant and its percentage of contribution to 

new Tweet.
Example: Dominant Topic 2nd Dominant Topic

33% 32%
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Topic 2 Topic 4
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Manual Annotation (Train/Test data)

• 100, 200, 300, 400, and 500 tweets from train data
• New tweets for test data
• Calculate accuracy with ground truth
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Manual Annotation

• Intent of tweets.
• For example:
• Tweet 1: Learning some traditional yoga with my good friend.

• Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness
#core #abs #diet #gym #bodybuilding #workout #yoga
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Manual Annotation

• Intent of tweets.
• For example: 
• Tweet 1: Learning some traditional yoga with my good friend. 

• Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness
#core #abs #diet #gym #bodybuilding #workout #yoga
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Manual Annotation

• Intent of tweets.
• For example: 
• Tweet 1: Learning some traditional yoga with my good friend. 

• Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness
#core #abs #diet #gym #bodybuilding #workout #yoga
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Train/Test Accuracy with Ground Truth
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Observation 1 

Dominant Topic 2nd Dominant Topic

43% 23%
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Observation 1
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Observation 2
Dominant Topic 2nd Dominant Topic
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Observation 2

Dominant Topic 2nd Dominant Topic
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Still Questionable!

• Why does the model give Misleading topic?
• Why does the model give Unrelated topic?
• Is there bias in data?
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Interpretability
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Explainability
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Still Questionable!

• Why does the model give Misleading topic?
• Why does the model give Unrelated topic?
• Is there bias in data?

Interpretability
&

Explainability

Future Work

• Analyze the Model interpretability

LIME: Local Interpretable model-agnostic 
Explanation
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Ex-Twit: Explainable Twitter Mining on Health Data – Tunazzina Islam. Social NLP 2019 @IJCAI 2019.
Pre-print:  https://arxiv.org/abs/1906.02132
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Summary

Tweets

Topic Modeling

Topic Inference and 
Correlation Mining

• Finding out dominant and 2nd dominant topic of 
each tweet (train data)

• Observing percentage of contribution of topic in 
each tweet

• Topic inference on new tweets (test data)

• Manual annotation both for train and test data to 
observe accuracy.

• Discovering interesting correlation 
i.e. Veganism and Yoga

LSA
NMF
LDA 49



QUESTION?

Tweets

Topic Modeling

Topic Inference and 
Correlation Mining

• Finding out dominant and 2nd dominant topic of 
each tweet (train data)

• Observing percentage of contribution of topic in 
each tweet

• Topic inference on new tweets (test data)

• Manual annotation both for train and test data to 
observe accuracy.

• Discovering interesting correlation 
i.e. Veganism and Yoga

LSA
NMF
LDA 50



THANK YOU
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