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Tweets

Topic Modeling Methodology

Bag of Words
(BoW)

Topic Model

e Latent Semantic Analysis

term-document matrix : iy
* Singular value decomposition

(occurrence of terms in each
document)

Rows = words
columns = tweets

* Non-negative Matrix Factorization
* Matrices are non-negative
* Normalization with TF-IDF to
give more weight to the
“more” important terms

e [Latent Dirichlet Allocation
e Dirichlet distribution

Topics

Topic

Freq. of words in

words




How to choose optimal Number of Topics?

* Build many LSA, LDA, NMF models with different values of number of topics
(k).

* pick k with highest coherence value.



Optimal Number of Topics vs Coherence Score LSA
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Topics using LSA
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Optimal Number of Topics vs Coherence Score NMF

K=4
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Topics using NMF

* sparse representations
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Optimal Number of Topics vs Coherence Score LDA
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Visualization of Topics- pyLDAVIS
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Slide to adjust relevance metric:(2)
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1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)

2. relevance(term w I topic t) = A * p(w I t) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014)
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Visualization of Topics- pyLDAVIS
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Visualization of Topics- pyLDAVIS
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Visualization of Topics- pyLDAVIS
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Tweet.

Example:

Topic Inference (Train data)

* Observing dominant topic, 2"4 dominant topic and its percentage of contribution in each

Dominant Topic

Veruka Salt @LesegoMasithela - Apr 18 v
Revoking my vegetarian status till further notice. There's something | wanna

do and | can't afford the supplements that come with being veggie

Topic 2

vegan
yoga

job

every_woman
cooks _goe

therapy _remember
life_juggle
everyone_birthday
eat

boyfriend

61%

2"d Dominant Topic

Topic 1

diet
workout
new

go

day
beyonce
get
today
bitch

gym
18%
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Topic Inference on New Tweets (Test data)

* Observing dominant topic, 2" dominant and its percentage of contribution to
new Tweet.

Example: Dominant Topic 2"d Dominant Topic
« Topic 2 Topic 4
Larry D. Williamson

m @Wilgroup vegan fitness

| would like to take time to wish "ALL" avery  op e

happy @! every_woman health

12:32 PM - 22 Apr 2019 cooks _goe time

O " Y = therapy _remember great
life_juggle look
everyone_birthday hiking
eat make
boyfriend love

33% 32%
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Manual Annotation (Train/Test data)

« 100, 200, 300, 400, and 500 tweets from train data
* New tweets for test data
* Calculate accuracy with ground truth



Manual Annotation

e Intent of tweets.

* For example:
* Tweet 1: Learning some traditional yoga with my good friend.

* Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness
#core #abs #diet #gym #bodybuilding #workout #yoga



Manual Annotation

e Intent of tweets.

* For example:
* Tweet 1: Learning some traditional yoga with my good friend.

* Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness
#core #abs #diet #gym #bodybuilding #workout #yoga

Yoga activity

Workout, Diet




Manual Annotation

e Intent of tweets.

* For example:

* Tweet 1: Learning some traditional yoga with my good friend. Topic 2
* Tweet 2: Why You Should #LiftWeights to Lose #BellyFat #Fitness Tooic 1
#core #abs #diet #gym #bodybuilding #workout #yoga OPIc



Accuracy
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Train/Test Size vs Accuracy

200
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300
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 Train: 66%
e Test: 51%
e Baseline random: 25%
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Observation 1

Miss Kate .
@KateHagans
This morning | packed myself a salad. Went Dominant Topic 2" Dominant Topic
to yoga during lunch. And then ate my salad Topic 2 Topic 3
with water in hand. .
vegan swimming
yoga swim

I'm feeling so healthy | don't know what to ob
even do with myself. Like maybe | should eat J day

a bag of chips or something... every_woman much
| cooks _goe support

12:32 PM - 22 Apr 2019
therapy _remember really

17kes @B v @ PO life_juggle try

® 1 O o everyone_birthday always
eat relationship
boyfriend pool

43% 23%
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Miss Kate

@KateHagans

Observation 1

This morning | packed myself a salad. Went

to yoga during lunch. And then ate my salad Dominant Topic
with{water in hand. Topic 2
vegan
I'm feeling so healthy | don't know what to yoga
even do with myself. Like maybe | should eat job
a bag of chips or something... every woman
12:32 PM - 22 Apr 2019 COOkS_goe
ks QB v @ DO therapy _remember
) _ life_juggle
| | everyone_birthday
eat
boyfriend
43%

Misleading
topic

2" Dominant Topic

Topic 3

swimming
swim

day

much
support
really

try

always
relationship
pool

23%
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ObSe rVatIOﬂ 1 Diet related

topic (Topic 1)

Miss Kate

@KateHagans

This morning | packed myself a salad. Went

. Dominant Topic 2"d Dominant Topic
to yoga during lunch. And then ate my salad
with water in hand. Topic 2 Topic 3
. vegan swimmin
I'm feeling so healthy | don't know what to wimming
, : yoga swim

even do with myself. Like maybe | should eat job day

a bag of chips or something... every woman much

12:32 PM - 22 Apr 2019 COOkS_goe Support

7ikes QBv@PDOS therapy _remember really

o - o e life_juggle try

’ - a everyone_birthday always
eat relationship
boyfriend pool

43% 23%
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Observation 2

Dominant Topic 2" Dominant Topic

figa Jimmy from the BX @BloodwingBX - Apr 22 . | Topic3 Topic 2
i‘ Replying to swimming vegan
swim yoga

My extra sweet halfcaf double vegan soy chai pumpkin latte was 2 degrees

hotter than it should have been and the foam wasn't very foamy. And they day job

spelled my name Jimothy, "Jim" on the cup... it's a living hell here. much every_woman

O e . U support cooks_goe

o - really therapy _remember
try life_juggle

4 always everyone_birthday

relationship eat
pool boyfriend

37% 33%
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Observation 2

Unrelated topic Related topic

Jimmy from the BX @BloodwingBX - Apr 22 v V V

Replying to . . . .
Dominant Topic 2" Dominant Topic

&

My extra sweet halfcaf double vegan soy chai pumpkin latte was 2 degrees

hotter than it should have been and the foam wasn't very foamy. And they Topic 3 Topic 2

spelled my name Jimothy, "Jim" on the cup... it's a living hell here. swimming vegan

Q 9 17 Qe S swim yoga
day job

L 4 much every_woman

support cooks _goe
really therapy _remember
try life_juggle
always everyone_birthday
relationship eat
pool boyfriend

37% 33%
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Still Questionablel

* Why does the model give Misleading topic?
* Why does the model give Unrelated topic?
* |s there bias in data?
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Still Questionablel

* Why does the model give Misleading topic?
* Why does the model give Unrelated topic?
* |s there bias in data?

Future Work
Interpretability * Analyze the Model interpretability
&
Explainability LIME: Local Interpretable model-agnostic

Explanation

Ex-Twit: Explainable Twitter Mining on Health Data — Tunazzina Islam. Social NLP 2019 @IJCAI 2019.
Pre-print: https://arxiv.org/abs/1906.02132



https://arxiv.org/abs/1906.02132

Tweets

summary

Topic Modeling

LSA
NMF
LDA

 Finding out dominant and 2"¢ dominant topic of
each tweet (train data)

* Observing percentage of contribution of topic in
each tweet

* Topic inference on new tweets (test data)

e Manual annotation both for train and test data to
observe accuracy.

* Discovering interesting correlation
i.e. Veganism and Yoga

Topic Inference and

Correlation Mining
49




Tweets

QUESTION?

Topic Modeling

LSA
NMF
LDA

 Finding out dominant and 2"¢ dominant topic of
each tweet (train data)

* Observing percentage of contribution of topic in
each tweet

* Topic inference on new tweets (test data)

e Manual annotation both for train and test data to
observe accuracy.

* Discovering interesting correlation
i.e. Veganism and Yoga

Topic Inference and

Correlation Mining
50
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