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• Low quality and polarizing information 

• Real-world implications

• Acceptance of treatments, vaccines and other prevention measures

• Combating the infodemic:

Most NLP Work:
Detecting Misinformation

Our Work:
Characterizing the reasons 

and attitudes that guide 
people’s choices
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Stance: Not a fan

Why? The vaccine is dangerous
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• Pro or anti vaccine, and the reasons why

• Three main challenges:

1. Predicting the stance

2. Constructing the space of possible reasons

3. Mapping text to reasons

Established NLP classification task

Big challenge

Interactive, humans-in-the-
loop protocol
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Interactive HIL Protocol

• Initial set of themes: main reasons people cite to refuse the vaccine
e.g: “The vaccine is dangerous” (Wawrutza et. al, 2021)

• How can we ground them?

Experts can explain themes in
natural language

Experts can examine groundings using 
exploratory operations

Model
Paraphrase
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Vaccine Dangerous

Covid Fake

Vaccine Danger: wording related to sickness,
rhetorical questions, refusing the vaccine for
medical reasons. 

Covid Fake: wording related to be cheated, 
scammed or hoaxed. 
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Interactive Sessions 

• 3 NLP/CSS Researchers in two 1-hour sessions

• 85,000 unlabeled tweets about the covid vaccine

• First session: adding new themes, removing themes that were not 
prevalent in the data

• Second session: identifying high-level argumentative patterns that 
were not being captured, and contributing 2-5 examples
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• Reminder: Morality frames capture differences in the actors / targets of 
moral sentiment
• They can help us explain opinions
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If the actor of AUTHORITY is “Fauci”, the author is more 
likely to be pro-vaccine, and to express Trust in Science

If the actor of HARM is “Fauci”, the author is more likely to 
be anti-vaccine, and to express Distrust in Government

Source: Identifying Morality Frames in Political Tweets Using Relational Learning, Roy et al '21
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Basic Classifiers

Dependencies between different dimensions

Stance consistency preferences 

• Map tweets to stance/reason/MF
• Map entities to role and polarity

• If Fauci harming, likely anti-vax

• If two tweets talk about Fauci, and they
are both anti-vax, likely same polarity

DRaiL: Deep Relational Learning
[Pacheco and Goldwasser, 2020]

W: Harm(Fauci) -> AntiVax(Tweet)

• Entities relations and prob. rules

• Learn embeddings for ent/rels
• Learn weights for rules

• Constrained optimization 
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Basic Classifiers

Dependencies between different dimensions

Stance consistency preferences 

• Map tweets to stance/reason/MF
• Map entities to role and polarity

• If Fauci harming, likely anti-vax

• If two tweets talk about Fauci, and they
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• Joint inference makes our 
model competitive with 
just 25% of direct 
supervision

• We beat the fully 
supervised base model 
with 50% of direct 
supervision 



The Impact of Reasons and Interaction

Adding rules that 
condition 

stance/MF on 
themes

+ all other rules



Is Human Intervention Helpful? 

Correlation heatmaps between Themes and Moral Foundations

LDA Topics Wawrutza et. al, 2021 Themes Interactive Themes

• Stronger correlations!
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• More diverse distribution of reasons!

Before Interaction

After Interaction
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Discussion

• It makes sense to decompose the decision into multiple views
• Better predictions
• Interpretability

• Limitations: size of annotated dataset studied

• Annotating for morality frames is expensive: a case for semi-
supervised methods. 

• Structured inference and human interaction are good alternatives


